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A B S T R A C T  

Given a pr ime ideal P in a noe ther ian  ring R we examine  the  following 

two propert ies:  (1) P is Ore localizable. (2) The  complet ion of R at  

P is Noether ian .  For r ings sat isfying the  2nd layer condi t ion a s t rong  

connect ion  is discovered be tween (1) and  (2) and  consequent ly  ques t ions  

by Goldie and  McConnel l  are answered.  As a corollary we also ob ta in  a 

new charac ter iza t ion  for n o n - m a x i m a l  pr imit ive ideal P in R to sat isfy (1), 

where  R is the  enveloping algebra of complex solvable finite d imens ional  

Lie a lgebra  

1. I n t r o d u c t i o n  

Localization and completion at a prime ideal of a commutative ring are very 

basic and important techniques. Goldie [G] initiated a study of the completion 

at a prime ideal P of a non-commutative Noetherian ring R, primarily in order 

to compensate for the lack of Ore localizability at P. A natural question which 

he raised was: when is l im{R/P i Noetherian? Furthermore, the question of 
+__ 

relating Noetherian completion to the Ore localizability at the prime ideal P was 

left open. In [D, p. 196] McConnell made this question more explicit by asking 

whether the localizability at a prime ideal P is related to the Noetherian property 

of lim~R/P ~. Related examples were given by McConnell [Mcl], Jordan [J1], and 
+__ 

Small-Stafford [$2]. 
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The purpose of the present paper is to explore the possible connection between 

these two notions. Surprisingly they are strongly related. One of our main 

positive results is the following Theorem. 

THEOREM 2.4: Let R be a Noetherian ring with the 2nd layer condition and P 

a prime ideal in R satisfying 

(1) R / P  is semi-primitive, 

(2) P C N,  where N is a localizable semi-prime ideal, 

(3) l i n ~ R / P  ~ is Noetherian. 

Then P is (Ore) localizable. 

Remarks 1: For the notion of "2nd layer condition" (s.l.c. in short) we refer 

the reader to [GW] or [Ja]. We remark that Noetherian P.I. rings and enveloping 

algebras of solvable finite dimensional Lie algebras over C, both satisfy s.l.c. 

2. A similar theorem for a semi-prime "homogeneous" ideal P is given in the 

paper. 

3. Examples in Section 3 show that one cannot drop any of the conditions in 

Theorem 2.4. 

4. Condition (2) can be avoided in case R is a P.I. ring and R = T(R),  the 

trace ring of R (Theorem 3.7). 

Our next result is a consequence of Theorem 2.4. 

THEOREM 2.6: Let g be a finite dimensional complex solvable Lie algebra and 

R =- Ug its enveloping algebra. Let P be a non-maximal primitive ideal in R. 

Then the following conditions are equivalent: 

(1) P is localizable, 

(2) l im~R/P i =- R is Noetherian and P is strictly contained in a localizable 

prime ideal of R. 

Theorem 2.5 is a similar theorem to Theorem 2.4, with essentially the same 

proof, which deals with the (weak, topological) AR property. Using Theorem 2.5 

one is able to characterize the AR property of an ideal, in a Noetherian P.I. ring, 

in terms of completion as follows: 

THEOREM 4.6: Let R be a local Noetherian P.L ring and I an ideal in R. Then 

the following are equivalent: 

(1) I satisfies the A R  property, 



Vol. 96, 1996 NOETHERIAN P.I. RINGS 117 

(2) lim~R(t)/I~(t) is Noetherian. 
4-- 

R e m a r k s :  1. We recall that by [RSS], S = {f  C R[ t ] [ f  is monic} is an Ore set 

in n[t] and R(t) - R[t]s is a Jacobson ring. 

2. A more elaborate version for R semi-local can be obtained. 

3. This result should be compared with a result of Goldie [G] where a stronger 

assumption: gr(I) being Noetherian, implies that I satisfies the strong AR prop- 

erty. 

We now discuss possible converses to Theorem 2.4: Suppose that  P is local- 

izable, is the P-adic complet ion/~ Noetherian? Firstly we recall the following 

result: 

THEOREM ([B1, Theorem 14])): Let R be a left Noetherian P.I. ring and P a 

maximal ideal in R. Then l in~R/P ~ is left Noetherian. 

The next step will naturally be K.dim R I P  = 1, as shown in the next theorem. 

THEOREM 5.1: Let R be a left Noetherian P.I. ring and P a prime ideal in R. 

Suppose that 

(1) P is a finitely generated right R-module, 

(2) K.dim R / P  = 1, 

(3) P is left localizable. 

Then f~ - l imiR/  P ~ is left Noetherian. 
+__ 

Combined with Theorem 2.4 this leads to the following characterization of a 

localizable prime P with K.dim R I P  = 1. 

THEOREM 5.7: Let R be a Noetherian P.I. ring and P a prime ideal in R with 

K.dim R I P  = 1. Then the following are equivalent. 

(1) P is localizable. 

(2) (i) P[t] C_ N, N is a localizable semi-prime ideal in R[t], and 

(ii) limiR[t]/P~[t] is Noetherian. 

Remarks: 1. P[t] c_ N can be replaced by Pit] C N. 

2. If R = T(R) ,  then (i) and K.dim R / P  -- 1 are superfluous. 

3. Instead of using R[t] we could of course have assumed that  R / P  is semi- 

primitive. 

The next step is therefore K.dim R I P  -- 2. Here, unfortunately, we face the 

following counterexample: 
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Example 6.6: There exists a prime Noetherian affine P. I. ring which is a finite 

module over its center and a localizable prime ideal P in R satisfying: 

(1) p.i.deg(R/P)= p.i.deg(R). 

(2) K.dim R / P  = 2. 

(3) lim~R/P i is not Noetherian (neither left nor right). 
4----  

(4) P C N where N is a maximal and localizable ideal. 

(5) P does not satisfy the AR property in R and PN does not satisfy the AR 

property in RN. 

(6) RN is a prime local Noetherian P.I. ring which is a finite module over its 

center and lim~RN/P~v is not Noetherian. 

Remark: Example 6.6 provides a counterexample to a question of Jordan 

[J2, Remark 2, p. 233]. 

When summing up the answers to the questions raised at the beginning, we 

see that  in case K.dim R / P  = 0, the Noetherian property of /) is weaker 

than the localizability of P. When K.dim R/P  = 1, then the localizability 

of P is equivalent (under mild assumptions) to /~ being Noetherian. Now if 

K.dim R / P  = 2, the localizability of P is a much weaker property than the 

Noetherian property of / ) .  

The paper is organized as follows. In Section 1 we have, in addition to the 

introduction, some definitions and preliminaries. In Section 2 we prove Theorems 

2.4, 2.5 and 2.6. Section 3 provides examples showing that the assumptions of 

Theorem 2.4 cannot be weakened. We also prove here (Theorem 3.7), in the 

case where T(R) -- R, an improved version of Theorem 2.4. We also prove some 

general results concerning localization (Propositions 3.5 and 3.6). In Section 4 

we prove Theorem 4.6. Section 5 is devoted to the proofs of Theorems 5.1 and 

5.7. In Section 6 we construct Example 6.6. 

We now recall some definitions and notations. For standard unexplained ter- 

minology we refer to [Mc-R], [GW] and [Ro]. We recall that  the prime ideals 

P, Q are said to be linked, and this relation is denoted by P -~ Q, if there exists 

an ideal A with PQ C_ A c P ~ Q, and such that P n Q/A is a left torsionfree 

R/P-module as well as a right torsionfree R/Q-module (e.g. [GW]). By the term 

Noetherian we always mean (unless specified otherwise) left and right Noether- 

ian. By K.dim R we always denote the classical Krull dimension of R. For a 

Noetherian P.I. ring this is equal to the usual Krull dimension. We shall denote 
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b y / )  - l imiR/I  i and remark that this is defined in the cases where Ni I i ¢  {0} 
+ - - -  

by looking at /~ = R~ Ni Ii, f =- I~ [~i Ii and taking /~ = .~. Finally, A C B 

means that  A is properly contained in B. 

2. Noetherian completion implies localizability 

The main purpose of this section is to prove Theorems 2.4, 2.5 and 2.6. We 

begin with a lemma which will enable us to reduce the problem to the case 

= ( o } .  

LEMMA 2.1: Let R be a Noetherian ring satisfying the s.l.c., and P a prime ideal 

in R. Suppose that 

(1) P C_ N, N a localizable semi-prime ideal in R, 
p n (2) / N~ P is left localizable in R /  N~ P~. 

Then P is left localizable in R. 

Proo~ Let I =  {x E R I txs = O  for somet ,  s E C(N)}. It is an easy exercise, 

using the right and left Ore condition of C(N), to show that  I is a two-sided 

ideal in R. Let V be a prime ideal in R with P ~-* V. By definition there exists 

an ideal A in R, P V  C_ A C P n V and P A V/A is R / P  - R / V  torsionfree 

bimodule. It is easy to see, using [GW, 12.17], that C(N) C_ C(V). Consequently 

I G P N V and therefore I C_ A. Next, since C(N) consists of regular elements 

in R / I  we have R / I  C_ (R/ I )~ ,  the latter being the localization of R / I  with 

respect to C(N/I) .  Consequently by Jategaonkar's Theorem [GW, Theorem 12.8] 

we have that  Ni N~ = {0}. Hence/5 - FiX satisfies Ni p i  = {0} and therefore 

~ i  pi  C_ I. Consequently, using I C A, the link PNV/A is preserved in R / ~ ,  pn. 

However, by the left localizabiiity of P / N n  pn and [GW, Theorem 12.21], we 

have that  P/~,~ pn = V / ~  P~ and therefore P = V. Again, this shows by 

[GW, Theorem 12.21] that  P is left localizable. | 

Remark: As seen before, the implication: "P  ~-* V ~ P = V", shows, by 

[GW, Theorem 12.21], that P is left localizable; and this is frequently used in 

this paper. 

PROPOSITION 2.2: Let R be a Noetherian ring satisfying s.l.c, and P a prime 

ideal in R. Let N be a localizable semiprime ideal in R satisfying C(N) C_ C(P) 

and denote by X ( P )  the clique of P. Then 

(1) ~ i ( N  i + Q) = Q, for each Q • X(P) .  
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(2) Let P1, t)2 E X ( P )  and A an ideal in R satisfying PIP2 C A C_ P1 M P2, 

with P I n  P2/A is R /PI  - R/P2 torsionfree. Then N~(N ~ + A) = A. 

Proof'. By [GW, Lemma 12.17] we have that C(N) C C(Q) holds for every 

Q E X ( P ) .  Let P1, P2 E X ( P )  with P1 ~ P2. Hence there exists an ideal A 

in R satisfying PxP2 C_ A C P1 N P2 and P1 n P2/A is a R/PI  - R/P2 torsion- 

free bimodule. Hence /~ - R / A  has an Artinian quotient ring with C~(0) -- 

C(P1) AC(/~'2). Consequently, since C(-N) C_ C(Pl)MC(P2), we have tha t /~  C_/~N, 

the latter being a semilocal ring satisfying s.l.c. So by Jategaonkar's Theorem 

[GW, Theorem 12.8] we have that N~ N~- = {0). Consequently, [~i ~ = {0}, 

that  is Ni (N i 4- A) -- A. This proves (2). Also/Y~ = Jae(/~R) so NR projects 

into the Jacobson radical of every homomorphic image of/~R. Consequently 

every ideal in/~R is closed with respect to the topology induced by {N~-}. Let 

Q E X ( P ) .  In particular Q~ = N~(Q~ 4- N~). Hence 

i i 

which implies that O = n~(o  4- fi-i), that is Q = n i (Q 4- Ni) • | 

We collect here, for the sake of completeness, several standard results about 

completions. 

LEMMA 2.3: Let I, J and P be ideals of the ring R. Suppose P is right (or left) 

finitely generated. Let [t - lira R /  P i. Then 

(1) I J  C_ I~'J, where f (respectively J) is the closure of I (respectively J)  in R. 

(2) = = RP"  = FUR each n. 

(3) P c Jac(&). 

Proo~ First we prove (1). Let x E I, y E 3*. T h e n x  = limxn, x,~ E I, y =  

lira Yn, Yn E J, where x - x~ E P~. We have 

xy  - xnyn = x(y -- y~) + (X -- X,~)y~ E [~P"-~ + fi'~-~ C_ P'~, for each n. 

Hence, since xny~ E I J  for each n, we get xy E IJ .  

Next we observe that by [Ro, Vol. I, p. 118] P~-~ = /~P~ for each n. Conse- 

quently P~'~ _c (/~)n. The other inclusion follows from (1). 

Finally (3) is proved in [Ro, Vol. I, p. 117]. 

We are able now to prove the following: 



Vol. 96, 1996 NOETHERIAN P.I. RINGS 121 

THEOREM 2.4: Let R be a Noetherian ring satisfying s.l.c, and P a prime ideM. 

Suppose that 

(1) R / P  is semiprimitive, 

(2) P c_ N,  when N is a localizable semi-prime ideal in R, 

(3) l i m i R / P  ~ is Noetherian. 

Then P is localizable. 

Proof." By Lemma 2.1, we may assume that Nn pn  = {0}. Hence R C /) - 

l i m i R / P  n. Let Q be a prime ideal satisfying P ~ Q. Let PQ  c A C P A Q 

with P A Q / A  a R I P  - R / Q  torsionfree bimodule. By Proposition 2.2 we have 

N~(A + N ~) = A and Ni (N ~ + Q) -- Q. Consequently A - A~(A +/5i)  satisfies 

_ ~ A R - - - - A a n d l i k e w i s e Q n R =  Q. Clearly / 5 n R =  P. Let B -  / S A Q / A .  

Then B A (R /A)  -- P N Q/A.  Now by Lemma 2.3,/SQ c_ P-"Q c_ A, which implies 

that ~-ann~B _D /5 and r -ann~B _D Q. Also B A (R/A)  = P A Q / A  implies that  

(g-ann~B) n R C_ e-annRP A Q / A  = P. 

Since R / P  ~- /)//5, we must have, using f-annRB _D /5, that f -ann~B = /5. 

Similarly ( r -ann~B)AR C_ Q. However, Q A R = Q implies that (r-ann~B)A R = 

Q. Observe that  /)//5 ==- R / P  is a Noetherian ring satisfying the s.l.c. So by 

applying [GW, Lemma 12.3] to the /~//5 _ / ~ / Q  bimodule B, there exist sub- 
pt S I: bimodules B' and B , with B'  D such that B' /B ' I  is a torsionfree left/~//5_ 

module as well as a torsionfree right / ) /M-module for some prime ideal M in 

/), M _D Q. By (1) and [GW, Theorem 7.161 we get t h a t / ) / M  is semi-primitive. 

Consequently M _D Jac(/)) _D t5 (the last inclusion is by Lemma 2.3). Now 

since/~//5 satisfies the s.l.c., we may apply [GW, Theorem 12.4] to B ' / B " ,  as a 

/)/ /5 - R I M  bimodule, and get that K.dim/~//5 _< K . d i m / ) / M .  Combined with 

/ 5 C  M, this implies that t 5 = M .  F i n a l l y P = / S A R = M A R _ D Q A R = Q  

implies that  P -- Q. The same reasoning is applicable if Q ~-~ P. | 

Remark: The previous theorem can be generalized to the semi-prime case as 

follows. P must be replaced by a "homogeneous" semi-prime ideal [~=i  Pi; 
t namely K.dim R / P i  = K.dim R/P1 for i = 2 , . . . ,  s. Now N = ~i=i  Qi is a semi- 

prime ideal in R, so condition (2) must be replaced by: for every i, 1 < i < s 

there exists j,  1 <_ j _< t, so that Qj _D Pi. The proof is exactly the same, taking 

P = Pi, and showing that P -~ Q implies Q = Pk. The details are omitted. 

THEOREM 2.5: Let R be a Noetherian ring satisfying the strong s.l.c, and I an 

idea/ in R. Suppose 
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(1) R / I  is a Jacobson ring, 

(2) I C_ N,  where N is a semi-prime localizable ideal in R, 

(3) /~ ~ I imiR/ I  ~ is Noetherian. 

Then IN satisfies the A R  property in RN. 

Proof'. Given V ~ W (or W ~ V) prime ideals in R s u c h t h a t  V_D I a n d  

C(N) C C(V), by [Brl, 3.1] we need to show that W D I. The proof is exactly 
^ ^ 

the same as the one for Theorem 2.4. The semi-primitivity of R / V  ~ R / V  

(since V _D I) is given by the 3acobson property of R/ I .  W is closed in the {I~} 

topology follows as in Proposition 2.2, since I C_ N. We then substitute V for 

P and W for Q in every step of the proof of Theorem 2.4. We conclude with 

M _D Jac(/~) _D/~ and hence I = ~f n R C_ M n R = W. I 

We now apply Theorem 2.4 to obtain a necessary and sufficient condition for 

the localization of a non-maximal primitive ideal in the enveloping algebra of a 

complex solvable Lie algebra. 

THEOREM 2.6: Let g be a complex, solvable, finite-dimensional Lie algebra and 

R - Ug its enveloping algebra. Let P be a non-maximal primitive ideal in R. 

Then the following are equivalent: 

(1) P is localizable. 

(2) l i m i R / P  i is Noetherian and P is strictly contained in a localizable prime 

ideal of R. 

Proof." The implication (2) =~ (1) follows immediately from Theorem 2.4. We 

now establish the converse. Let P be a localizable prime ideal of R. By [Mc-R, p. 

499] P is generated by a normalizing sequence. Now P being localizable implies 

by [Br2, p. 249, 8.1] that P satisfies the AR property. Consequently by [H, 

Remark 6.5, p. 340 and Theorem 6.5] we have that /~  ~ l in~R/P i is noetherian. 

Let N be the intersection of all prime ideals which contain P properly. By [Mc-R, 

p. 505] and the primitivity of P,  we have that N D P. So N = P i a . . .  n P~ where 

{P~] i = 1 , . . . ,  r} are the primes of R minimal with respect to strictly containing 

P.  Let F(g) be the subgroup of g*, generated by the Jordan-HSlder values (of the 

adjoint representation) of g (e.g. [BdC] or [Br2]). It follows from [Br2, 2.9 (iii)], 

and the localizability of P, that T~(P) = P for each ;~ E F(g), where ~-~ is the 

winding automorphism associated to ~ (e. g. [Br2]). Consequently T~(N) = N,  

for each ,~, which implies [Br2, 2.5] that {P1, . . . ,  Pr} is a finite union of cliques. 
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Say {P1 , . . . ,  Pk}, k _< r , is such a clique, then V -- P1 N . . .  O Pk is localizable 

and clearly V D P. Now [Br2, Theorem 2.13] implies that k = 1. | 

3. E x a m p l e s  o f  M c C o n n e l l ,  J o r d a n ,  R a m r a s  a n d  t h e  t r a c e  r ing  

In the first part  of this section we show that one cannot drop any of the condi- 

tions of Theorem 2.4, by using earlier examples by J. McConnell and D. Jordan, 

designed for related but different purposes. Surprisingly, an old example of 

Ramras will do as well. 

In the second part of the section, we shall show how to omit condition (2) of 

Theorem 2.4 in case R = T(R) .  

Example 3.1: [Mcl]. Let A = K[v, y] be the polynomial ring in two variables 

over a field K with char K = p > 0. Set R = A[x; a], the skew polynomial 

ring obtained by using the K-automorphism ~, given by ~(v) = v + y and 

~(y) = y. Let P = vR + xR. Then, as in ([Mcl] Sec. 3), Nn p(n) ¢ {0},/~ - 

l im iR /P  n is not Noetherian and P is not localizable. However, R / P  ~- K[y] 

being semiprimitive establishes condition (1) of Theorem 2.4. Also N - yR  + 

vR  + x R  is a maximal ideal which is generated by the centralizing sequence 

{y, v, x} (the order here is important). Therefore, by standard results (e. g. [Mc2, 

Lemma B], [Mc3, p. 309]), N satisfies the AR property and hence is localizable. 

Consequently, condition (2) of Theorem 2.4 is satisfied. However, as stated above, 

condition (3) is not valid and P is not localizable. Also, since Z(R)  = A~[xP], 

we have that  R = T(R),  the trace ring of R. 

Remarks: (1) McConnell described this example over any field K. The restric- 

tion char K -- p > 0 is made in order to turn R into a P.I. ring (and actually a 

finite free module over its normal center). 

(2) McConnell's example was originally given in order to provide an example 

of a Noetherian ring R with a prime ideal P so tha t /~  is not Noetherian as well 

as [ ~  P(n) 7~ {0}, but N~ p~ = {0}. 

Example 3.2: [J1, Example 4]. Let A = K[[v, y]] where K, v, y are as in the 

previous example and R = A[x; a] where a is the K-automorphism given by 

a ( v ) = v + y , a ( y ) = y .  L e t P = v R + x R a n d N = y R + v R + x R .  As in the 

previous example one sees that N is a maximal ideal with the centralizing set 

of generators {y, v, x} and hence localizable. It is shown in [J1] that  An P~ = 
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{0}, An p(n) ¢ {0} and /~ -- l i m ~ n / P  ~ is Noetherian. Now, N~ P(~) ¢ {0} 

implies that  P is not localizable. Observe that conditions (2) and (3) of Theorem 

2.4 are satisfied but (1) is not, since R / P  ~- K[[y]] is not semi-primitive. 

Remark: Originally, D. Jordan's example was given in order to refute the im- 

plication: "/~ is Noetherian ~ Nn p(n) : {O}", as conjectured by Small-Stafford 

[s2]. 
Surprisingly, an equivalent example could be obtained by using a variation of 

an example of Ramras as follows. 

Example 3.3: IRa]. Let A be a commutative regular local complete ring with 

2 being a unit in A, e.g., A = K[[x, y, z]]. Define the quaternion algebra R = 

A[1,a,/3, a/~] by setting a 2 = x + z  2, /~2 = y, a/3 = -/~a (i. e. R is A-free 

with generators 1, c~, 13, j3a). It is shown in [Ra, Example l(b), p. 351] that  R is 

local, and gl.dim R = 3. Let m -= (x, y, z). So R, being a finite(free) module 

over the complete commutative ring A, is complete with respect to {N~), where 

N = zR  + c~R +/3R is its unique maximal ideal. Now if P = (~ - z )R  + x R  + 13R 

and Q = (c~ + z )R  + x R  + fiR, then P and Q are distinct prime ideals in R with 

P n A -- Q n A = (x, y). So, since Z(R)  = A, we have that P is not localizable in 

R (this can be deduced from Miiller's result [GW, Theorem 11.20] or directly). 

However l i m n R / P  n is Noetherian since lim,~R/P '~ TM R (the completion of a 

complete ring R with respect to a finer topology is equal to R). Observe that  

Z(R)  = A is a normal domain, which implies that T(R)  = R. Hence, by [BS] or 

[B2], Nn ¢ {o}. . 

Remark: Taking A = K[x, y, z] in the previous example provides an example 

which could replace the one given by McConnell. We omit the rather easy details, 

but remark that  in order to show tha t /~  is not Noetherian one can use Theorem 

2.4. 

Example 3.4: We now produce an example of a non-localizable prime ideal P in 

R such that  Ni P / =  {0}, and P satisfies conditions (1), (3) of Theorem 2.4, but 

does not satisfy condition (2). Indeed let P be any maximal ideal in a Noetherian 

P.I. ring such that  P is not localizable and N~ P~ = {0} (e. g. [$2]). Clearly (1) 

is valid and (3) holds by [B1, Theorem 14]. 

Our next result, relevant to our considerations, is, surprisingly, new. 
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PROPOSITION 3.5: Let R be a ring such that every semi-prime homomorphic 

image of R is Goldie. Let iV be a localizable semi-prime ideal in R[t]. Then 

N n R is localizable in R. 

Proof: Let s E C(N N R) and r E R. Clearly s C C(N),  hence s - l r  = p(t)q(t) -1 

where q(t) E C(N).  Suppose that there exists a polynomial u(t) c R[t] where the 

highest non-zero coefficient a of q(t)u(t) is regular m o d ( N n R ) .  Then rq(t)u(t)  = 

sp(t)u(t).  Let b be the highest non-zero coefficient of p(t)u(t).  Then ra  = sb 

which implies that  s - l r  = ba -1, a E C(N n R), b C R. To show that  such u(t) 

exists we pass to /~ = R / N  n R C /~[t] = R[t]/(N n R)[t]. Now, that  q(t) is 

regular in/~[t] follows from C(N) C_ C((N n R)[t]). Hence q(t)f~[t] is essential in 

/~[t], so for every non-zero right ideal p in/~, we have q(t)R[t] N p[t] • O. Let K 

be the set of all highest coefficients of elements in q(t)R[t]. Then K n p # 0 for 

each p. Now, K being a right ideal implies that K is essential in /~ and hence 

contains a regular element. I 

The following is an interesting corollary, the converse of which seems to be 

open. 

PROPOSITION 3.6: Let R be a Noetherian ring and t a commuting variable. I f  

R[t] has a classical quotient ring then so does R. 

Proo£" Clearly CR(0) = CR[t](0) N R. Now by [S 1] we have that  CR[t](0) = 

C(V1) N. . .  NC(Vr) where {V1,. . . ,  V~} is the set of regular primes in R[t]. Clearly 

CR(V~ n R) = CR[t](VI) n R. Hence CR(0) = OR(V1 n R) n . . .  n CR(Vr n R). NOW 

by assumption V1 N. • • n V. is localizable and by Proposition 3.5 this implies that  

(V1 n R) n . . .  n (V~ n R) is localizable, that  is CR(0) is an Ore set. I 

We shall now show that condition (2) of Theorem 2.4 is not needed in case 

R = T(R) ,  the trace ring of R. 

THEOREM 3.7: Let R =- T (R)  be a prime Noetherian P.I. ring and P a prime 

ideal in R with An pn = {0}. Then the following statements are equivalent: 

(1) P is localizable, 

(2) An p(n) = {0}, 

(3) P sat/sties the A R  property, 

(4) limiR[t]/Pi[t] is Noetherian. 

Proof." Clearly (1) implies (2). That  (2) implies (1) follows from [BS] or [B2, p. 

86]. We next establish the implication: (4) ~ (1). By Lemma 4.2, Proposition 
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3.5 and T(R[t]) = T(R)[t], we may change notation and assume that P is semi- 

primitive and/~ is Noetherian. Clearly R C R. So there exists a minimal prime 

ideal Q in/~, with Q A R = {0}. Now/5 C_ Jac(/~) (by Lemma 2.3) implies that  

/5 + Q/Q c Jac(/~/Q). It is standard that every prime minimal over Jac(/~/Q) 

is the intersection of the primitive ideals containing it and therefore it is semi- 

primitive. Consequently every prime which is linked to it is semi-primitive (by 

[GW, Theorem 7.16]), hence it must contain Jac(/~/Q). 

Therefore if {V~/Q, i = 1 , . . . ,  s}, are the minimal primes over Jac(/~/Q) with 

the highest Krull co-dimension, then N1 - ~ i = 1 ( J Q )  is localizable semi-prime 

ideal in [t/Q. Consequently ~ ( N 1 )  (~) = {0}. However, since N1 D_ P + Q/Q, 
8 then N~=I Vi _D/5. Also by/~//~ -~ R / P ,  we have that V~MR is a prime ideal in R 

• , S ( - i  for i ---- 1, . .  s and C(N) C C(gl)  where Y -- ~i=l(V~ R). Now c ( g )  C_ C(N1) 

implies that  Ai N(0 = {0}. Therefore by an extended version of [B2, p. 88], 

N C_ N2, where N2 is a semiprime localizable ideal, obtained by intersecting 

some of the primes which are minimal over N. All the conditions of Theorem 2.4 

are now satisfied and P is therefore localizable. 

We now prove the implication (1) =~ (3). Let p = P M Z(R).  Recall that  by 

[BW, Proposition 3] P is the unique prime in R contracting to p. Consequently, 

by the Going-Down property of T(R) [B2, p. 82], P is the only prime of R 

which is minimal over pR. Hence pe C pR for some e. But pR has the AR 

property because it is centrally generated ([Mc-R] 4.2.6); hence P satisfies the 

AR property. 

Finally, in order to show that (3) implies (4) we use the previous implication 

to conclude that  Pelt] C_ p[t]R[t]. Consequently lim~R[t]/ P~[t] = lim~R[t]/p~R[t] 

and the latter is Noetherian by standard commutative algebra arguments. | 

4. Comple t ion  and the A R  property 

In this section, we first show that the (weak) AR property of I implies t h a t / t  is 

Noetherian. We then use Theorem 2.5 to establish Theorem 4.6. 

The next theorem should have been known. However, in the only reference we 

could find [Mc3], the same conclusion is proved with the additional assumption 

that  the ideal has a normalizing set of generators plus other conditions (but no 

P.I. assumptions are required). 

Recall that  an ideal I satisfies the left (weak or topological) AR property, if 

for every left ideal L in R there exists an integer n such that I n M L C_ IL. 
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THEOREM 4.1: Let R be a left Noetherian P.I. ring and I an ideal in R which 

satisfies the left A R  property. Then R = l i m i R / I  ~ is a left Noetherian P.I. ring. 

Proof: We may assume that Ni Ii = {0} and therefore R C_ /~. The proof 

follows the same pattern as [B1, Theorem 14], with a few additional changes. 

Recall that,  by the AR property, the topologies {[~L}, { I  ~ n L} are equivalent 

for every left ideal L in R. Consequently /~L -- lim~L/I~L = l im~L/I  i n L = 
+ . -  

closureR(L) = N~(I ~ + L), where the first equality is given by [Ro, p. 118] (or 

Lemma 2.3(2)) and the rest are as in [B1, Lemma 4]. Furthermore, by [B1, 

Lemma 6] W/~ C_ closureR(W), for every two-sided ideal W in R. Hence/~W ---- 

closureR(W) 2 W/~ shows tha t /~W is a two-sided ideal in/~. 

The rest of the argument is identical to the one in [B1, Theorem 14] and 

therefore the details are omitted. | 

The next lemma is a slight generalization of a (unpublished) result due to 

Goodearl-Stafford). 

LEMMA 4.2 (Goodearl-Stafford): Let R be a Noetherian ring and suppose that 

P ~ Q are linked prime ideals in R[t]. Then either P N R = Q N R or P N R 

QnR. 

Proof: Suppose that the link P ~ Q is given by the bimodule B = P N Q/A .  

Let PI = Pg)R,  Q1 -- Q ~ R  and B1 -- P l P Q 1 / A ~ R .  Note that  B1 is torsionfree 

on each side as R/P1 - R/Q1 bimodule. We shall consider two separate cases. 

CASE 1 : B 1  ~ 0. Then Px ~'~ Q1 is given by the torsionfree bimodule B1. 

CASE 2 : B 1  ~- 0. Hence A N R = P1 n Q1. Consequently, by considering 

R/P1 ~ Qx c R[t]/A, we may assume that P1 A Q1 = {0}. Say P1 is a minimal 

prime in R, then CR(P1) is an Ore set in the semiprime ring R and hence an Ore 

set in R[t]. Now it is easy to see that CR(P1) C CR[t](P) and being an Ore set, we 

have, since P ~ Q, that CR(P1) C_ CR[tl(Q) (e.g., by [GW, Lemma 12.17]). Now 

CR(Q1) = CR[t](Q) A R implies that CR(P1) C CR(Q1) and therefore P1 ~ Q1 as 

desired. The same argument works if Q1 is minimal. | 

COROLLARY 4.3: Let R be a Noetherian P.I. ring and I an ideal in R which 

satisfies the left A R  property. Then I[t] satisfies the left A R  property in R[t]. 

Proof: Let V ~-~ W be prime ideals in R[t] with V D_ I[t]. By [Brl, 3.1] we need 

to show that  W D I[t]. We have, by Lemma 4.2, that either V A R ~ W N R, 
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or V n R = W N R. In the former case, we have, since I C_ V n R and the AR 

property of I ,  that  I C_ W N R. Hence I[t] C_ W as needed. If  V n R = W n R 

then I C V N R = W n R and therefore I[t] C_ W.  I 

The next lemma is well known. 

LEMMA 4.4: Let R be a ring, and I an ideal in R and S an Ore set in R with 

I N S =- O. Suppose I satisfies the left A R  property in R. Then Is  satisfies the 

left A R  property in Rs .  

Recall that  S --- {f  E R[t][ f is a non-constant monic} is a multiplicatively 

closed set in R[t] and, by [RSS, Proposition 2.2], S is an Ore set in R[t]. Observe 

that  S N R = 0. We denote R(t) - R[t]s. As a corollary of the previous two 

results we have: 

COROLLARY 4.5: Let R be a Noetherian P.I. ring and I an ideal in R which 

satisfies the left A R  property in t7. Then I(t)  - I[t]s satisfies the left A R  

property in R(t).  

We are now able to prove the following. 

THEOREM 4.6: Let R be a local Noetherian P.I. ring and I an ideal in R. Then 

the following are equivalent: 

(1) I satisfies the A R  property. 

(2) l imiR(t) /I~(t)  is Noetherian. 

Proof." We first assume (1). So, by Coroolary 4.5, I(t) satisfies the AR property 

and consequently, by Theorem 4.1, lim~R(t)/I~(t) is Noetherian. Conversely 

assume (2) and let N = Jac(R).  Then by Lemma 4.2, N(t)  is a localizable prime 

ideal in R(t)  with I( t)  C_ N(t) .  Also by [RSS, Theorem 2.8] R(t) is Jacobson 

ring. All the conditions of Theorem 2.5 are now satisfied, implying that  I(t}N(t) 

satisfies the AR property. Let V _ I be a prime ideal in R with V ~ W (or 

W ~-~ V). We need to show that  W_D I.  NowV[t]  ~ W[t] a n d S N V [ t ]  = 0  

implies tha t  l/'(t) = V[t]s ~ W[t]s = W(t) .  Also V(t)  C_ N(t} as well as 

W(t )  C_ N( t )  implies that  V(t)N(t) ~'* W(t)N(t) .  Hence, by the AR property of 

I(t)N(t),  we conclude that  I(t)N(t) C_ W(t)N(t).  Consequently I _C W. I 

Remark: The version of Theorem 4.6 in the semi-local case requires the following 

addition to condition (2): Given a maximal ideal M in R with I C_ M then I C Q, 

for every Q c clique(M). We omit the proof which resembles the previous one. 
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5. K.dim R / P  = 1 

The main purpose of the present section is to prove the following result. We then 

prove Theorem 5.7. 

THEOREM 5.1: Let R be a left Noetherian P.I. ring and P a (semi) prime ideal 

satisfying 

(1) P is left localizable, 

(2) P is a finitely generated right R-module, 

(3) K.dim R / P  = 1. 

Then [~ = l i m i R / P  i is left Noetherian. 
+ _ _  

We will need the following: 

LEMMA 5.2: Let S be a prime left and right Goldie ring and M a finitely gen- 

erated torsionfree right S-module. Let I be an ideal in S satisfying Ni I~ = {0}. 

Then ~ M I  i = {0}. 

Proo£" Clearly M C_ M ®s Q(S),  the latter being a finitely generated projec- 

tive right Q(S)-module  and therefore is embedded in a free right Q(S)-module  

G. Consequently if g l , . . - ,  gn are the free generators of G over Q(S),  then we 

can multiply g l , . - . , g n  by s - l , s  E C(O) such that  the generators of M are S- 

linear combinations of g l s - 1 , . . .  ,gns -1. An easy examination shows that  f l  = 

g l s - 1 , . . . ,  f~ =_ g,~s -1 is a free set of elements over S. Hence F = f l S + . . . + f ~ S  

is a right free S-module and clearly M _C F. Finally M I  i C F I  ~ for each i and 

~ F P  = {0} since it holds at each component. | 

COROLLARY 5.3: Let V, W be prime ideals in a P.I. ring R and let A be an ideal 

with V W  C A C V ;7 W such that V N W / A  is a finitely generated torsionfree 

right R /W-modu le .  Suppose 0 ~ I is an ideal in R / W  with N~ I i  -- {0}. Then 

there exists a descending chain of ideals {V~} in R, A C V~ C V ~ W for each i, 

and [~i V~ = A. 

Proof." Take M = V A W / A  and S = R / W ,  use the previous lemma and set 

Vi - the preimage of M I  ~ in R. | 

Proof of Theorem 5.1: Since/~ = l im~R/P ~ we may assume that  ~ P~ = {0}, 

that  is R c C_ /~. For the sake of convenience we also assume that  P is prime. 

Let M be a maximal  member  in F =- {I  [ I is an ideal in/~,  I is not a finitely 
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generated left /~-module}. Using [B1, Lemma 11], we assume by negation that 

J:#0. 
As in [B1, Lemma 12], M is a prime, non-maximal, ideal in/~ and &/M is left 

Noetherian. Consequently, by Cauchon's Theorem (e.g. [Mc-R, 13.6.15]), [~/M 

is also right Noetherian. Also/5 = / ~ p  = p/~ (by Lemma 2.3), hence/5 is finitely 

generated as a left and right &-module. 

The proof, from now on, will proceed in steps. 

STEP 1: Let V be an ideal in /~ satisfying /SM C_ V C t5 N M and 

r-ann&(/5 n M/V) D M. Then /5 N M/V is a finitely generated left and right 

/~-module and consequently R/V  is left and right Noetherian. 

Indeed let I - r-annR(/5 n M/V). So, by the maximal choice of M, I is a 

finitely generated left/~-module. Furthermore (t5 N M)I C_ V, implies that I / V  

is a finitely generated left/~//5 n M-module. Now/~//5 n M is a semi-prime left 

and right Noetherian ring, since/~//5 • RIM is a left and right Noetherian ring 

and is a finite central extension of/~/ /5 n M. Consequently/5 n M/V C I / V  is 

a finitely generated left/~//5 n M-module. Also/5 N M/V is a finitely generated 

right/~-module since/5 n M/V C_/5/V, the latter being a finitely generated right 

/~/M-module, and RIM is Noetherian. Consequently, since/~//5 n M is left and 

right Noetherian and Nil-(/~/V) -- /5 N M/V is finitely generated as a left and 

right ideal, we get by standard results that R/V  is left and right Noetherian. 

STEP 2: r-ann/~(/5 n M//SM) = M. Otherwise take V -- /SM in step 1 and 

deduce that R//SM is left Noetherian. Consequently M//SM is a finitely gener- 

ated left /~-modute. Thus by standard results (e.g., IN, Theorem 30.6]) M is a 

finitely generated left R-module. A contradiction. 

STEP 3: The construction of A. Let A be an ideal in/~ satisfying 

(1) /SM C_A C /SNM, 

(2) A is maximal such tha t /5  n M/A is a faithful r ight/~/M-module.  

The existence of A is possible by step 2 and by the fact that /5 N M//SM is a 

finitely generated right, Noetherian,/~/M-module. 

STEP 4: /5 N M/A is a torsionfree right/~/M-module. We firstly state an easy 

lemma, the proof of which is left to the reader. 

LEMMA: Let T be a right module over a prime P.I. ring S and cx = 0 for some 

c E T where x is a regular element in S. Then c~ = 0 for some 0 # 6 E Z(S). 
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Now, let C C_ /5 n M/A be a sub-bimodule which is right torsion over [~/M. 
By the right Noetherian property of /5 n M/A, we have that  C is a finitely 

generated /~/M-module, C = ClR/M +. . .  + crR/M. Let 0 ~ ~ E Z(R/M) 
so that  ciSi = 0, i = 1 , . . . , r  and set d = 5 i - " ~ .  Then clearly cid = 0 for 

i = 1 , . . . ,  r and Cd = 0 (since d is central). Consequently r-ann~(C) ~ M. Now 

C = C1/A, C1 D A, so by the maximality of A (step 3) PNM/C1 is an unfaithful 

right RIM module. Hence, there exists x E /) - M satisfying (/5 a M)x c_ C1. 
Also, since r-ann~(C) D M, there exists s E C(M) a r-annft(C ). Therefore, 

(/5 n M)xs C Cls C_ A. Consequently xs E r-annk(/5 N M/A) = M (by step 2). 

Therefore, we get, since s E C(M), that x E M. An obvious contradiction. 

STEP 5: A is closed in the {/5~} topology. That is A = N~(A +/5~). Consider 

the bimodule /5 n M/A. Clearly if z ~ 0 is a non-invertible central element 

in [~/M, then n i  ziR/M = {0}. So by Corollary 5.3, there are ideals {V~} 

in /), satisfying A C V/ C_ V/-1 _C t S N M  and n i v i  = A. By steps 1 and 

3, /~/V~ is a left and right Noetherian P.I. ring for each i. Consequently by 

Jategaonkar's Theorem [GW, Theorem 12.8], Am Jac'(/~/V/) = {0}, for each i. 

Now/5 + V~/V~ C Jac(/~/t%), implies that n , ( / 5  n + 1/~) = v~, for each i. Hence 

N (P n + A) c N j N n ( p  + = = A. 

STEP 6: Separation into cases. Let Q -- M N R. Recall that [~/M is left and 

right Noetherian and/5  + M/M C__ Jac(/)/M). Hence, n i  Jac/( /) /M) ---- {0} and 

therefore Ni(/5~ + M) = M. Consequently by [B1, Theorem 130) ] Q = M n R 

is a prime ideal in R. Recall that t5 N R = P. We now need to deal with two 

separate cases, namely Case (1): P N Q D A N R, and Case (2): P N Q = A n R. 

STEP 7: Case (I). We tlave PNQ D ANR. Recall that  by [B1, Theorem 13(ii)1 

p.i.deg.(R/Q) = p.i.deg.(/)/M) and consequently C(Q) c_ C(M). Therefore, 15y 

Step 4, P N Q/A N R is a torsionfree right R/Q-module. Now R/Q is a prime 

left Noetherian P.I. ring, hence, by Cauchon's Theorem, a right Noetherian ring. 

Consequently, since P/A N R is a right finitely generated R/Q-module, we have 

that  P/AN R is a right Noetherian R-module and therefore P N Q/A N R, being a 

submodule, is right Noetherian as well. Furthermore, R/PNQ being left Noether- 

Jan and semi-prime, is right Noetherian. Thus R/ANR is a left and right Noether- 

Jan P.I. ring and B = P n Q/A N R is a finitely generated RIP - R/Q bimodule. 

Consequently, by [GW, Theorem 12.4] (applied to R/ANR), K.dim R/~-annnB = 
K.dim R/r-annnB. By step 2 and the above, we have that Q = r-annRB. Set 
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K = ~-annRB. Clearly K _D P. If K D P, then K is co-Artinian and therefore 

K.dim R / Q  = O, that is Q is maximal. Now n~(/5 ~ + M) -- M implies that  
i n~(P  +Q) = Q. So, by the maximality of Q, we have P c_ Q. Hence/5 C_ 0` C_ M 

and therefore M is left finitely generated. If Ig = P then P / A N  R ~ Q / A  N R is 

a link in the two-sided Noetherian P.I. ring R / A  O R. So, the left localizability 

of P implies that P / A N  R = Q / A  n R. Consequently P = Q and, therefore 

/5 = 0` C_ M and we finish as before. 

STEP 8: Case (2). We have P N Q = A o R. Consequently QP c_ A and 

therefore Q-~ c_ :~ = A, where the last equality is due to step 5. However, by 

Lemma 2.3, 0`/5 C_ Qt~ implies 0`/5 c_ A. We need the following, where [,] denotes 

the commutator:  

CLAIM: Let z • /5 and [z,/~] C 0`. Then [z2,/~] C_ A. Indeed [z 2,/~] C_ 

z[z, It] + [z, [t]z C_/50. + 0`/5 C_ d.  

We shall show now that  P C_ Q. Suppose by negation that  P ~ Q. We can 

find z • P - Q with [z, R] C_ Q (that is 2 is central in R/Q).  Consequently 2 

is central in (R/Q) = /~/0`. Hence, if Zl denotes the image of z in I t /A,  we 

clearly have that  z12(/5 N M/A)  = 0. Hence, by the Claim, (t5 O M / A ) z  2 = O. 

Consequently z 2 • r-annR(/5 n M/A)  = M. So z 2 • M n R = Q. This, together 

with the centrality of 2 in R/Q,  imply that 2 = 0, that is z • Q. An obvious 

contradiction. Finally P C Q implies/5 c 0` c_ M. Hence, M is a finitely 

generated left R-module. I 

Remarks: 1. It is remarkable that in case (2) we neither used the left localiz- 

ability of P nor the K.dim R I P  = 1 assumption. 

2. It would be nice to remove the right finite generation assumption on P.  

3. Theorem 5.1 is valid for P a semi-prime ideal. The proof is practically the 

same. 

4. The condition: "P  is localizable", is not necessary for the conclusion 

of Theorem 5.1. Indeed, let M be any maximal ideal in a P.I. Noetherian 

ring R with n~ M~ = {0}, but M is not localizable. Then by [B1, Theorem 

14] we have that  /~ is Noetherian. By some modifications of the proof one 

can prove that  actually lim~R[t]/M~[t] is Noetherian. So P = M[t] satisfies: 

K.dim R[t]/P = 1, lim~R[t~/P ~ is Noetherian but P is not localizable (otherwise 

M would be). 
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PROPOSITION 5.4: Let R be a Noetherian P.I. ring and P a prime ideal in R. 

Suppose: 

(1) P is left localizable, 

(2) /~ - l imiR/P i is Noetherian. 

Then/5 is a left localizable ideal in R. 

Proof." We may assume that  n i  pi  = {0} and hence R C/ ) .  Now (2) implies that  

every two-sided ideal in/~ is closed with respect to {Jaci(/))}, and consequently 

with respect to {/5i} since/5 C_ Jac(/~). 

Let Q1 be a prime ideal in /~ wi th /5  -~ Q1- We shall show that  /5 = Q1- 

Clearly by the previous paragraph, Q1 is closed. Consequently by [B1, Proposi- 

tion 13], Q -- Q1 n R is a prime ideal in R and p.i.deg(R/Q) = p.i.deg(R/Q1). 

Hence CR(Q) c_ Cf~(Q1). Let A be a two-sided ideal i n / )  satisfying/5Q1 c A C 

/5 n Q1 and /5  n Q1/A is/~//5 _/~/Q1 torsionfree. 

Suppose firstly that  R n A c P n Q. Then, since R / P  ~- !~//5 and CR(Q) c_ 

CR(Q1), we have that  P n Q/R  n A is R / P  - R /Q torsionfree, which implies by 

the left localizability of P that  P = Q. Hence /5 = ~) C_ Q1- Now the equality 

Q1 = / 5  follows from K.dim/~/ /5 = K.dim [~/Q1. 

Next, suppose that  R n A = P n Q. Then QP c_ A and hence, since A is closed 

in/~,  Q---fi c_ A. The rest of the argument is identical to the proof of Theorem 

5.1, step 8. Consequently P C_ Q and therefore/5 C_ 0 C_ Q1. We conclude as in 

the previous case. | 

Remark: A similar proof, in which P is assumed to satisfy the left AR property, 

implies t ha t /5  satisfies the left AR property. 

We next have the following corollary. 

LEMMA 5.5: Let R be a Noetherian P.I. ring and P a prime ideal satisfying 

(1) P is localizable 

(2) K.dim R / P  = 1. 

Then/5 satisfies the AR  property in R. 

Proof." /~ is Noetherian by Theorem 5.1. Let V _D t5, V --* W (or W -~ V) where 

V, W are prime ideals in R. If V = / 5  then the previous proposition shows that  

W = /5. If V D /5 then V is maximal, that  is K.dim [~/V = 0. Consequently, 

by [GW, Theorem 13.15] we have that  K.dim R / W  = 0, that  is W is maximal. 

Now/5 C Jac(/~) forces/5 C_ W. | 
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LEMMA 5.6: _For every ideal I we have 

limi R[t]/ I{[t] ~ lim~/~[t]/~i[t] 

Proof" This is a consequence of the isomorphisms R/I~[t] TM R[t]/Ii[t] and 

~ R/t 
We now have the following characterization. 

THEOREM 5.7: Let R be a Noetherian P. I. ring and P a prime ideal with K.dim 

R / P  = 1. Then the following are equivalent: 

1. P is localizable, 

2. (i) Pit] C_ N, N is a localizable semi-prime in R[t], and 

(ii) limi R[t]/ Pi[t] is Noetherian. 

Proo~ That  (2) implies (1) follows from Theorem 2.4. Given (1), then by 

Theorem 5.1 we have that /~ is Noetherian. Consequently, /5 satisfies the AR 

property by Lemma 5.5. Hence, by Corollary 4.3,/5It] satisfies the AR property in 

/~[t]. Therefore liml [t[t]/Pi[t] is Noetherian (by Theorem 4.1). Now by Lemma 

5.6, (ii) is established. | 

6. L o c a l i z a t i o n  does  no t  a lways imp ly  n o e t h e r i a n  completion 

Let R be a finitely generated (over a central subring) Noetherian prime P. I. ring 

with T(R)  ~ R. We have T(R)  = RZ(T(R))  = R [ ~ I , . . . ,  an] where Z(T(R))  = 

Z ( R ) [ a l , . . . ,  ~n]. There exists a natural onto map 

v: R[ t l , . . .  ,tn] ~ R[c~l,... ,~,~] = T(R),  via 

t i  --* ~ i .  

Also denote by 121 the restriction of v to Z ( R ) [ t l , . . . ,  t,~]. Clearly vl is an onto 

map 

vl: Z(R)[ t l , . . .  , tn] ~ Z(r )[a l , . . .  , an] = Z(T(R)) .  

We denote by I _-__ ker r ,  a = kerul and R[t l , . . .  ,tn] - R[t]. for every prime 

ideal p in Z(T(R))  we clearly have Nil-(pT(R)) = N~-I P{, where P1 , . . .  , Ps  are 

the prime ideals in T(R)  minimal over pT(R). It is corollary of the Going-Down 

between Z(T(R))  and T(R) [B2, p. 82] that P{ N Z(T(R))  = p, for i = 1 , . . .  , s. 

We denote by m -= ~- l (p)  and Mi = v- l (P i ) ,  for i = 1 , . . .  ,s.  

The next result is crucial. 
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PROPOSITION 6.1: Let R, R[t_], v, 121, p, m, M~, I, be as above. Then 

(1) I is a prime ideal in R[t] with p.i.deg(R[t]/I) = p. i .deg(R);  

(2) i f  I satisfies the AR property, then N - n~=l M~, is localizable for every 

prime p. 

Proof" (1) is clear. To prove (2), suppose tha t  I satisfies the A R  property.  Fix  

i and suppose tha t  V is a pr ime ideal with M~ ~ V. Now I = k e r r  C_ M~, 

implies, by [GW, Propos i t ion  11.16] and the A R  proper ty  of  I ,  t ha t  I C_ V. Also 

Mi ~ V implies by [GW, L e m m a  11.7], t ha t  M~ n Z(R[t])  = V N Z(R[t]) .  Recall  

t ha t  Z(R[t])/a -~ Z(T(R)) .  We next  observe tha t  M~ n Z(R[t])  = m. Indeed 

let x 6 Mi n Z(R[t]) ,  then y =- v(x) • v(Mi)  n v(Z(R[t] )  = Pi O Z(T(R))  = p. 

So since x • Z(R[t])  = Z(R)[t] ,  we have tha t  x • v~-l(p) = m. The  reverse 

inclusion, t ha t  m C_ Mi n Z(R[t]) ,  is trivial. Thus V O Z(R[t])  = m. Hence 

V =- V/ I ,  satisfies V n Z(T(R))  = p (using m/a  = p). consequently since V is a 

pr ime ideal in T(R),  we have tha t  V = Pj, for some j,  1 _< j _< s. Hence V = Mj 

for some j .  | 

We now have an impor t an t  Corollary. 

COROLLARY 6.2: Let R be a Noetherian prime finitely generated P. I. ring and 

p a p r ime  ideal in Z(T(R)) .  Let Nil-(pR) s p ---- ni=l ~ and suppose that K - 

p ni=l( i n R)  iS not localizable. Then I = k e r v  does not satisfy the AR  property. 

Proof" Suppose by negat ion tha t  I satisfies the A R  property.  Then  by Proposi-  

t ion 6.1, and continuing with  the nota t ion  used there, N = n~=l  Mi is localizable 

in R[t]. Consequently,  by Proposi t ion 3.5, N n R = n~=l(Mi N R) is localizable 

in R. Now it is easy to check tha t  M~ n R = (MffI)  n R = Pin  R, for each i and 

consequently K = N n R is localizable, a contradiction.  | 

Remark 6.3: I t  is very easy now to produce a pr ime Noether ian  P. I. r ing S, 

finite module  over its Noether ian  center with I ,  a pr ime ideal in S, p . i .deg(S)  = 

p.i.deg S / I ,  but  I does not satisfy the A R  property.  Indeed take any pr ime 

Noether ian  P. I. r ight R, finite over its center, wi th  P a max ima l  ideal such t ha t  

n~ p i  = {0}, bu t  P is not  localizable. Then  by [B2, Theorem 9] there exists 

a max ima l  ideal p in Z(T(R))  such tha t  P i n  R = P, for i = 1 , . . .  , s  where 
$ 

ni=l P~ =Nil-(pT(R)). Then  S = R[t], and I = ker u will do. To find such an R 

we ei ther  take R from [S 2] or as in [BS]. 

We can make  S semilocal by localizting it at  a suitable max ima l  clique with  
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(at least) one of its memebers containing I. However, we would like to have a 

local example with some special features as in Example 6.6. 

In order to achieve this we need the following. 

PROPOSITION 6.4: Let R C S be Noetherian P. I. rings and K and ideal in S 

with K C_ R. Let V1 ~ V2, be prime ideals in S where I( (L V~, for i = 1, 2. Then 

V1 ~ V2 implies V1 n R ~* V2 n R. 

Proof'. Let  V1 n V2/A be a torsionfree S/V1 - S/V2 bimodule given by V1 ~-* V2. 

Observe that  R/Vi n R TM R + V~/Vi has the same quotient ring as S/Vi, since 

K + V~/V~ is a common ideal, for i = 1, 2. Hence V~ N R is a prime ideal in R, 

i = 1, 2. If (V1NR)N(V2NR) ~ ANR then VINR ~.* V2NR as needed. Suppose by 

negation that  (VINR)N(V2NR) = ANR, hence (V2NR)(VINR) C A. Also V2NK 

V1 N R because V2 N K G V1 implies V2 C 1/1 ro K C V1, an obvious contradiction. 

So, there exists 6 E V2 N K, with 0 ~ 5 E Z(R/V1 N R). Since R/V1 n R and S/V1 

have the same quotient ring we have that 5 E Z(S/V1), that is [6, S] C V1. Now 

62[6, S] C_ 62V1 C_ 6(KV1) C_ 6(K N VI) C_ (V2 n R)(V~ N R) C A. Consequently 

[63, S] C_ 5216, S]+[62, S]6 C A+[62, S]6 C_ A+V16 C_ A+VI(V2NK) C A+V1V2 C 

A. Let :~ =- S/A, then 5 -5 is central in :~, moreover g-ann~V1 N V2/A --- V1/A = ~/1 

and r-ann~V1 n V2/A = V2/A -- V2. Now 63 c V2, so by the centrality of 53, we 

have 6 --~ E V1 that is 53 E V1. Since ~ is central in S/V1, this implies 5 E V1, a 

contradiction. | 

COROLLARY 6.5: Let R, S, V1, V2, K be as in the previous proposition and P a 

prime ideal in S such that P C V1, P ~= V2. Then 

(1) P n R does not satisfy the AR property in R, and 

(2) P n R is a prime ideal in R and p.i.deg(R/P n R) = p.i.deg(S/P). 

Proo~ That  P n R does not satisfy the AR property follows from the previous 

result. Indeed if P n R c V2, then P n K C_ V2, which leads to an obvious 

contradiction. Now, R + P / P  and S /P  have K + P / P  as a common non-trivial 

ideal. Hence R + P / P  TM R / P  N R is a prime ring with the same p.i. degree as 

s/P. . 

The  cons truc t ion  of  Example  6.6 

Let A be an affine prime P.I. ring finite module over its center with the following 

properties: 
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(1) K.dim A = 1, 

(2) n i  Mt = {0} for some maximal ideal M which is not localizable. 

The existence of such is given by e.g. [BS, Remark 2, p. 3301. Let z be a new 

variable and B = A[z]. Now, set 

S =  B[ t l , . . . , tn]  whereT(B)=B[C~l , . . . , (~n]  

and 

u: S ---, T (B) ,  via 

ti --+ ~i 

is the canonical homomorphism as described at the beginning of the section. 

Also we denote I - kert,. So, by Remark 6.3, I does not satisfy the AR prop- 

erty. Now, by [B2, Theorem 9] (or by direct calculation), there exists a clique 

{ P ~ , . . . , P ' }  in T(A)  with P" n A = M for i = 1 , . . . , s .  Consequently, using 

T(B)  = T(A)[z], {P~'[z],..., P'[z]} is a clique in T(B)  with P'[z] n t? = M[z] 

for each i. Set P/ - P'[z], and M~ - v-l(P~) for i = 1 , . . . , s .  Therefore 

(n~=l P~) N B = M[z I and M[z] is not localizable, since M is not localizable. 

Now, if n~=l M/ is localizable in S, then, by Proposition 3.5, (n~=l M~) n B is 
S $ 

localizable, but (n~=l M~) n B = (ni=l  P/) N B = M[z], which leads to a con- 

tradiction. Consequently, there exists a prime ideal V in S with Mj .~ V (or 

V ..~ Mj)  for some 1 < j < s, but V ¢ Mi for each i. If I C V then the proof 

of Proposition 6.1 shows that  V = M~ for some i. Hence I ~ V. We denote by 

Mj ~ V 1 and V = 172. Let N1 D V1 be a maximal ideal and {N1 , - . . ,N t}  = 

clique(N1). Set N = n~=l Ni. It is clear that  C(N) C_ d(V1), hence by [GW, 

Lemma 12.7], d(N)  C_ C(V2), which implies that V2 C_ Nj, for some 1 < j _< t. 

Finally set R = Z(S)  + N. We need to show that  R satisfies all the required 

properties. First, since Z(R)  = Z(S) ,  we have that  R is a prime affine P.I. ring 

which is a finite module over its Noetherian center. Next, N is semi-maximal in 

S (and is a maximal ideal in R), so being in addition localizable in S, it satisfies 

the AR property in S. This immediately implies that  N satisfies the AR property 

in R, and so, by the maximality of N in R, we have that  N is localizable in R. 

Now, by Corollary 6.5, the prime ideal I a R does not satisfy the AR property 

i n R a n d c l e a r l y I N R C  V I N R C  N 1 N R =  N. Furthermore ( I N R ) N  does 

not satisfy the AR property in the local ring RN since Cs(N)  C_ Cs(V2) an~ 
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therefore CR(N) C_ CR(V2 n R) which shows that (V1 N R)N -'~ (V2 N R)N , but 

(I N R)N ~= (V2 N R)N although (I  N R)N C (V1 O R)N. Also l im iR / ( I  n R) ~ is 

not Noetherian by Theorem 2.5. The rest of the properties of Example 6.6, as 

stated in the introduction, can now be easily shown. I 

To clarify the AR property notion, we add the following. 

LEMMA 6.7: Let R be a finite module over its Noetherian center and P is a prime 

ideal in R. Set p = P n Z(R).  Then P satisfies the AR  property iff pk  C_ pR for 

s o m e  k. 

Proo~ Say pk C_ pR. Given a left (right) ideal L in R we have p~R N L C_ pL 

for some e. Consequently pek O L C_ p e r  n L C pL C_ PL. Conversely, suppose 

P satisfies the AR property and V D_ pR a minimal prime. If V ~ P, then, by 

Miiller's result [GW, Theorem 11.20], since P is localizable, V N Z(R)  =_ v D p. 

Therefore, by the Going-Up property, there exists a prime ideal W in R, with 

W D P and W N Z ( R )  = v. Now, V N Z ( R )  = W N Z ( R ) , i m p l i e s t h a t  V E 

clique(W) (by Miiller's result). Therefore by [GW, Proposition 11.16] we have 

that  P C V as needed. I 

Remark 6.8: Example 6.6 is also a P.I. counterexample, to a question of Small- 

Stafford [$2]. P being localizable implies that A n  p(n) : {0}. A non-P.I, example 

is already given in [J2]. Consequently, Example 6.6 provides a counterexample 

to a question of Jordan [J2, Remark 2, p. 233]. 
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